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Abstract. Clustering continues to be an important tool for data en-
gineering and analysis. While advances in deep learning tend to be at
the forefront of machine learning, it is only useful for the supervised
classification of data sets. Clustering is an essential tool for problems
where labeling data sets is either too labor intensive or where there is
no agreed upon ground truth. The well studied k-means problem par-
titions groups of similar vectors into k clusters by iteratively updating
the cluster assignment such that it minimizes the within cluster sum of
squares metric. Unfortunately k-means can become prohibitive for very
large high dimensional data sets as iterative methods often rely on ran-
dom access to, or multiple passes over, the data set — a requirement that
is not often possible for large and potentially unbounded data sets. In
this work we explore an randomized, approximate method for clustering
called Tree-Walk Random Projection Clustering (TWRP) that is a fast,
memory efficient method for finding cluster embedding in high dimen-
sional spaces. TWRP combines random projection with a tree based par-
titioner to achieve a clustering method that forgoes storing the exhaus-
tive representation of all vectors in the data space and instead performs
a bounded search over the implied cluster bifurcation tree represented as
approximate vector and count values. The TWRP algorithm is described
and experimentally evaluated for scalability and accuracy in the presence
of noise against several other well-known algorithms.

Keywords: Clustering · machine learning · dimensional reduction · lo-
cality sensitive hashing.

1 Introduction

The expanding needs for analysis on large data sets has increased as the amount
and availability of data continues to grow. Concepts such as the Internet of
Things (IoT), social media, digitized medical records, and the aggregation of
complex high volume scientific measurements further exacerbated this need. The
size and format of this data makes manual analysis infeasible and has motivated
the drive for automated methods such as data clustering.

⋆ Support for this work was provided in part by the National Science Foundation
under grant ACI–1440420.
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Meanwhile big data solutions often find their greatest success on large fast
moving data sets. By virtue of the sheer volume of these datasets, supervised
labeling is often not possible. Unsupervised learning fills this gap by sacrificing
a desired optimization based on a set of ground truths for a solution that, in the
case of clustering, tries to optimize the co-similarity of objects in a partition or
dissimilarity of object between partitions. Clustering is the process of partition-
ing data into grouping of related items. It is one of the most fundamental modes
of learning and understanding data [21]. Clustering is an intuitive, data analysis
method that can provide clear insights into the underlying structure and trends
of a dataset. Given its interpretability at high applicability, clustering has been
used in a wide variety of disciplines ranging from medical diagnostics and epi-
demiology to financial prediction and credit fraud detection. As the number of
sources and volume of these types of datasets grow deeper insights are desired.

Among the most commonly used clustering algorithms, k-means has been
proven as one of the most popular choices that delivers acceptable results in
reasonable time [21]. k-means has proven to be statistically efficient and easy
to implement. While k-means is widely used for clustering streaming data, it
has performance issues when it comes to robustness with noise, parallelism, and
working with very large, high-dimensional data sets. In particular, k-Means (and
other conventional techniques) for data clustering do not parallelize or scale well
with the increasing dimensionality of data.

This paper introduces and evaluates an approximate method for clustering
called Tree-Walk Random Projection Clustering (TWRP) that is a fast, memory
efficient method for finding clusters in high dimensional spaces. TWRP is a tree
based clustering method that forgoes storing the exhaustive representation of all
vectors of the data space and instead performs a bounded search over the implied
cluster bifurcation tree represented as approximate vector and count values.
Big data clustering algorithms are not new; in fact many classic algorithms are
reasonably well suited to operate on big data with only minor pre-clustering
tweaks [26]. Although successful, most methods optimize over the entire data
embedding, while TWRP finds not only dense regions in the full embedding,
but also allows for the identification of dense low-rank embeddings.

The remainder of this paper is organized as follows: Section 2 provides some
background information. Section 3 surveys related work to develop solutions for
high-performance big-data clustering. Section 4 describes the Tree Walk Random
Projection (TWRP) cluster method and the original RPHash algorithm [8] (on
which TWRP is based). Section 5 contains experimental results of our proposed
solution against other common clustering methods. Finally, Section 6 gives a
summary of our results and findings.

2 Preliminaries

An important tool for overcoming the Curse of Dimensionality COD is dimen-
sional reduction. In the case of very large datasets, more robust data aware
dimensional reduction techniques such as t-SNE and PCA begin to dominate
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the computational complexity. For ill-posed problems such as clustering, the
optimal subspace embedding that is based on minimizing either the L2-norm
or Kullback-Leibler divergence is somewhat overkill. Instead, approximate di-
mensional reduction technique such as Random Projection using the method of
Database Friendly Projection by Achlioptas [1] is sufficient.

The JL-Lemma [32] states that the error bound for low dimensional embed-
dings, is exponentially proportional to the number of objects in the dataset. For
large datasets, such as those we are interested in, this bound is still somewhat
prohibitive, calling for subspace embeddings on the order of thousands. Thus
for 1 − ǫ = .90, and n > 109, the reduced dimension D is bounded below by

D > Ω( log(n)
ǫ2

).
Locality Sensitive Hash (LSH) functions are employed as probabilistic rep-

resentation of vector locality to improve the prohibitive subspace embedding
dimensionality requirement of the JL-Lemma. An LSH function is any hash
function with the property that hashed records with more similar components
are more likely to be hashed to the same bucket than records with more fewer
similarities. Formally:

Definition 1 (Locality Sensitive Hash Function [11]). let H = {h : S →
U} is (r1, r2, p1, p2)− sensitive if for any u, v ∈ S, where h is the hash function
belonging to the hash family H that maps from the element set S to U and d is
the distance metric. Thus, an LSH function operates so that:

if d(u, v) ≤ r1 then PrH[h(u) = h(v)] ≥ p1, and
if d(u, v) > r2 then PrH[h(u) = h(v)] ≤ p2.

While LSH functions are interesting approaches to quickly compute vector local-
ity, they tend to have some difficulties separating distinct communities of vector
data, especially when the vector data is not uniformly distributed throughout
the subspace. While considerable work has gone into finding better and near
optimal [4] functions for optimizing the signal to noise ratio for locality sensitive
hash functions, the best solutions often require multiple passes over the data to
build data aware functions.

To switch from the continuous spaces of random projections, discrete space
partitioning lattices are also considered. The data space must be partitioned as
evenly as possible for an optimal implementation of the clustering. Also to avoid
expensive interprocess communication overhead, a universally generative naming
scheme must be established. For many known datasets, the Voronoi partitioning
[22] can be generated in Θ(nlog(n))-time [16] for 2D space and produces perfect
partitions. However as the dimension increases this algorithm have less favor-
able run time complexities [17], making them inefficient for partitioning higher
dimensional data sets.

3 Related Work

In this section we present related work on clustering large scale datasets. A
variety of clustering methods have been proposed in the past that take advantage
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of estimation techniques for machine learning, namely: tree based clustering,
dimensional reduction, and locality sensitive hashing (LSH).

The DBScan [13], Clique [3], and CLARANS [28] algorithms represent a
successful progression of density scanning techniques. Although density scan al-
gorithms are often scalable, they often show weaknesses in accuracy when scaling
the number of dimensions.

Proclus [2] explored random projection for clustering. The merits of random
projection are discussed in [10]. They suggest that random projection not only
compresses sparse data sets, making them computationally more tractable, but
also may help overall accuracy by alleviated round-off issues caused by non-
homoscedastic variance. This occurs because random projection generates more
spherical clusters in a more dense subspace. In addition to Proclus, various other
methods and analysis have been proposed for clustering with random projections
that provide bounds on the convergence and limits of random projection clus-
tering. Florescu provides bounds on the scaling and convergence of projected
clustering [15]. Their results closely follow the logic of Urruty [31] who find that
the number of orthogonal projections required is logarithmic in n (where n is
the number of vectors to be clustered). Following that, the probability of a ran-
dom projection plane offering a good partitioning increases exponentially as the
number of dimensions in the projected subspace increases. Bingham et al pro-
vide examples of projected clustering well below the JL bound [7] and Bartal
et al make these assertions mathematically rigorous showing that the projected
subspace is independent of the data’s original dimensionality [6].

4 Tree-Walk RPHash

RPHash [8] is an algorithm for dense region and microcluster identification suit-
able as a precursor to more robust clustering algorithms like k-Means and ag-
glomerative hierarchical clustering or as a standalone approximate clustering
algorithm. In RPHash, both approximate and randomized techniques are em-
ployed to provide a stochastic element to the clustering algorithm. Due to this
nature it has the tendency to produces some variation in its outputs. The Tree
Walk RPHash (TWRP) extension attempts to mitigate this instability and pro-
vide stability to the results.

The basis of the Tree Walk RPHash (TWRP) algorithm is the RPHash clus-
tering algorithm which has capacity to be amenable to distributed and steaming
settings [9]. The RPHash algorithm arose from a realization that the degenera-
tive cases for LSH k-nearest neighbor search is a useful method for identifying
candidate cluster centers. A problem arises in the query step in which a par-
ticular LSH hash is disproportionately over represented. The result is that the
algorithm must linearly scan and order all members of that hash bucket, to de-
cide which are the nearest neighbors of the query vector. While bad for LSH
K-NN, RPHash uses these outlier buckets as candidates for cluster centers. The
original RPHash algorithm is shown in Algorithm 1. Here xk is a vector form
the dataset X. This vector is projected multiple times by a projection matrix p
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taken form the larger set P . Then the vector is mapped to a region or bucket
following the LSH scheme and the bucket counts are recorded. In the second
pass over the data (the second forall statement) only those vectors assigned to
the buckets with high counts are considered as the probable candidate cluster
centroids (ci).

In the original RPHash description, the LSH function is often chosen to be
some generative function that uniformly covers a desired subspace. Ideally, an
LSH function distributes vectors into buckets such that the underlying dense and
sparse structures of the dataset are identifiable. One way to achieve this is to
scale size of the LSH regions (often by the overall data’s variance, and cardinality
of the LSH mapping) to balance it between the two extremes: too dense or too
sparse. To address this issue, a data aware LSH function was developed, called
adaptive LSH (Algorithm 2), that attempts to optimize the distribution of hash
buckets over the data-space. Adaptive LSH proceeds by taking a simple LSH
function similar to the p-stable distribution LSH [20]. A key attribute to this
particular type of LSH function is the immediate relationship between adjacent
depths of the hash that we used in this algorithm. Composeable LSH allow us
to balance the hash ID allocation.

Algorithm 1: 2-Pass RPHash

forall xk ∈ X do
forall pi ∈ P do

x̃k ←
√

m
d
p⊺i xk

t = H(x̃k)
L[k][i] = t
C.add(t)

forall xk ∈ X do
forall ci ∈ C.top(K) do

if L[k]∩M [i][0] 6= 0 then
∆ = xk −M [k]
M [k] =
M [k] +∆/count
L[k].add(M [i][0])

Result: Candidate Centroids

Algorithm 2: Adaptive
LSH
i = 1
ct, ct prev =
C
(

H
i+1(x)

)

, C
(

H
i(x)

)

while i < n and
2ct > ct prev do

ct prev, i = ct, i+ 1
ct = C

(

H
i(x)

)

Result: Hi(x)

Definition 2 (LSH Composability). An LSH function H
n(x) that maps x ∈

R
n → Z

n
2 , is composable if there is a related function H

n−1(xn−1) that maps
xn−1 ∈ R

n−1 → Z
n−1
2 where H

n−1(xn−1) =
(

H
n(x) + 1

)
⋃

(

H
n(x) + 0

)

for all
xn ∈ R

n

Although a variety of metrics are feasible, one of the simplest is to continue
to extend the hash depth, so long as the subsequent hash count is greater than
half of the parent hash count. This method comprises the adaptive LSH function
(Algorithm 2).
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We use the simple LSH function proposed in Indyk and Motwani’s original
work on LSH for approximate near neighbor search [20]. We apply the hamming
space LSH function to projected euclidean space by observing the signs of the
projected vectors with respect to the origin. Formally, a Signed Based Projected
LSH function is defined as: H(X) =

∑

sign(P (X))2n.
The TWRP method begins with the standard RPHash algorithm, but instead

of only updating buckets, TWRP also increments the counts of all sub-hashes
as well. This bares a slight resemblance to Liu et al [23] while adapting their
algorithm to work in a streaming and distributed setting and without using any
supervised learning. TWRP can use a variety of metrics for the tree splitting
condition. Unlike Liu et al TWRP does not concern itself with the more compli-
cated calculation to compute C4.5 entropy method. TWRP avoids the splitting
of clusters with random hyperplanes by the virtue of its application to high
dimensional data that is, the probability of splitting a cluster goes to zero as
the dimensionality grows. The theorem below is a consequence of the curse of
dimensionality.

Theorem 1. (Hyperrectangle Splitting) The probability of splitting a hyper-
rectangular region into two equal mass clusters where subsequent dimensional
cuts contain the smaller of the two induced regions region approaches 0 exponen-
tially in d.

lim
d→∞

V ol(R)− V olremoved(R)

V ol(R)
= 0, R Rectangle ∈ R

d. (1)

Proof.

Let X s.t. xj = [0...c...0] ∈ R
d is orthogonal, c ∈ [0, 1),

n
∑

i

xi = P, is a plane in

R
d, and V ol(R) = 1

Let: S1(p) be the volume of the projection of R on xp Restrict S1(p)+S̃1(p) = 1,

S1(p) ≤ S̃1(p) for all p

V (Rs(X)) =
n
∏

p

S1(p) where S1(p) ∈ U [0, 1
2 )

V (Rs(X)) ≤ 2−n for all n, lim
n→∞

2−n = 0

⇒ V (RS(X)) + V (R̃S(X)) = V (s), V (R̃S(X)) = V (s) as d→∞ �

Algorithm 3 and Algorithm 4 are the core elements of TWRP. The algorithm
is linear in the input vector size x. For each vector TWRP must compute the
projection and update the counter (Algorithm 3). This algorithm introduces two
operations the + to mean population weighted addition, and ≫ for the bit shift
operation. Projection using the approach of Achlioptas [1] can be performed in
dm/3 operations where d is the original dimensionality and m is the projection
sub-dimension. As each vector comes in it is projected onto the new lower dimen-
sion which the user inputs at runtime. There are m levels of hashing and as each
level there are 2level of buckets. Each projected vector is hashed onto a vector
using the LSH scheme for every level. Thus all the vectors are present at all lev-
els. We bound the memory as we only store a single vector in each bucket. This
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is done by storing only the mean of the vectors coming into a specific bucket.
We also store the count for each bucket. Whenever a vector is to be inserted
into a bucket, we update its vector using weighted merge and increase the count
by one. It is to be remembered that at this point we store the vector means in
their original dimension. Thus we diminish the dimension only to determine in
which bucket each vector goes in and then store the vector means in its original
dimension into the buckets.

Algorithm 3: Online Tree
Generation

forall x ∈ X do
x̃ =

√

m
d
p⊺x h := H(x̃)

while h > 0 do
h = h≫ 1
x′ = C[h] + x
C.add(h, x′)

Algorithm 4: Offline Tree
Search

forall H ∈ sort(C.ids) do
if 2C[H] < C[H ≫ 1] then

C[H ≫ 1] = 0

L = []
forall h ∈ sort(C.counts) do

L← medoid(C[H])

return L

The offline step consists of exploring and updating the count records (Algo-
rithm 4). In general it follows a depth first search traversal for candidate clusters
with a worse case complexity of exploring all non-leaf nodes, θ(2m−1). This is
done by comparing the counts of each bucket at all levels. The hash values form
a binary tree with each level having 2level nodes. We compare the count of parent
and child nodes/buckets and look for the possible centroids. We also remove the
buckets with a threshold count value assuming these are possible noise. Thus
only the dense part of the tree are kept for possible centroid values. We then
return a overestimate of our weighted candidate centroids and use standard clus-
tering algorithms such as k-means or Hierarchical Agglomerative to reduce these
overestimated centroids to the desired number.

5 Experimental Results

TWRP has multiple configuration parameters, namely: projection distance, of-
fline clustering algorithm, and sizes of the overestimated candidate cluster set.
During preliminary testing of the TWRP, approximately 800 different configu-
rations were evaluated using synthetically generated labeled data sets. Based on
this testing, the best configuration that provided the consistently “best” WCSS
result was selected. In particular, a configuration that projects data to 16 dimen-
sions, using the offline k-means clusterer, and an overestimated centroid count of
10×k (where k is the number of clusters desired) was selected. This configuration
is used to collect all the data reported in this section. Because of the stochastic
nature of TWRP, the TWRP algorithm is configured to be run six times and
the result with the best WCSS value is reported. The hardware used for testing
is a 16 core Intel(R) Xeon(R) E5-2670 @ 2.6GHz, supporting 32 threads with
64GB of RAM.
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5.1 Data Sets

The initial testing was performed with synthetic data generated as 10,000 vectors
from dimensions 100 to 7,000. Each generated data set has 10 Gaussian clusters
with labels recorded for all points. An accompanying noise test with synthetic
data was performed. In particular, a 10,000 vector data set at dimension 1,000
was generated. We then replaced a percentage of vectors with randomly gener-
ated vectors but keeping the original label attached to the noise data. The noise
was injected in percentages of 5-40 percent in steps of 5 percent. Finally, a set
of scalability of the TWRP algorithm was performed also using synthetic data.
In particular, we generated 8 synthetic datasets with 10 clusters and of 1,000
dimensions but varying the total number of vectors from 30,000 to 1,000,000.

Finally We used six real world datasets all available at the UCI machine
learning repository. The Human Activity Recognition Using Smartphones (HAR)
dataset is taken from the [5]. This dataset consists of 10,299 vectors containing
561 features consisting of 6 clusters. The Smartphone Dataset for Human Activity
Recognition (HAR) in Ambient Assisted Living (HARAAL) dataset is taken from
[12]. This data has 5744 vectors and 561 features. It has 6 clusters. The gene
expression cancer RNA-Seq Data Set (RNASEQ) dataset is taken from [14]. This
data has 801 vectors and 20531 features and 4 clusters. The Smartphone-Based
Recognition of Human Activities and Postural Transitions Data Set (HAPT)
dataset is taken from [29]. This data has 10929 vectors and 561 features. This
dataset has 12 cluster groups. The Indoor Location Data (INLOC) dataset is
taken from [30]. This data has 21048 vectors and 529 features. It consists of 3
clusters. The Gas Sensor Array Drift (GSAD) dataset is taken from [33]. This
data has 13910 vectors and 128 features. It is composed of 6 clusters.

5.2 Algorithms Used for Comparison

We compared the performance of TWRP against six standard well known algo-
rithms, specifically:

– k-Means: This is the algorithm of Hartigan and Wong [18] implemented with
the function k-means in R [24].

– Four methods of Agglomerative Hierarchical clustering, namely: Single Link-
age, Complete Linkage, Average Linkage and Ward’s minimum variance
method. At every stage the inter-cluster distances are recomputed by the
Lance-Williams dissimilarity update formula according to the particular clus-
tering method that is being used. For Ward’s [27]) clustering method,the
dissimilarities are squared before updating the cluster. We have used the
function hclust in R for implementing these algorithms.

– Self-organizing Tree Algorithm (SOTA): This is relatively new algorithm
based on neural network. It is implemented using the sota function in R
(found in package clValid) [24].

These algorithms are selected due of their importance, popularity and availability
in R statistical computing framework. These algorithms use FORTRAN, C and
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C++ subroutines from R to make them run faster. The implementation language
of TWRP is Java.

5.3 Comparison with Other Algorithms

The clustering performance and runtime for TWRP is compared to the six other
algorithms described in Section 5.2. The clustering accuracy of TWRP is evalu-
ated using 2 external clustering validation measures: Adjusted Rand Index (ARI)
and Cluster Purity. We also use the internal measure WCSS for evaluation. ARI
[19] measures the extent to which points from the same ground-truth partition
appear in the same cluster, and the extent to which points from different ground-
truth partitions are grouped in different clusters. ARI eliminates the chance of
misjudging clustering outputs in cases where the output labels could be switched
even if the clusters are well identified. The value of ARI lies between -1 and 1;
an ARI of 1 denotes a perfect agreement between two partitions (and therefore
a perfect clustering). Cluster purity [25] measures how many data points were
correctly assigned to its original cluster. WCSS (also called WCSSE or SSE) is
the within cluster sum of squared error. A lower value of WCSS indicates bet-
ter clustering performance. It is basically the objective function that k-means
algorithm tries to minimize in order to find suitable clusters.

The measured ARI, PURITY and WCSS for the synthetic datasets are plot-
ted in Figure 1. The TWRP algorithm produces results on all measures are
always better than that of k-means algorithm. TWRP has the value of 1 for
ARI and PURITY for all these datasets,indicating perfect clustering. TWRP’s
WCSS also matches the baseline WCSS (i.e., the actual WCSS for a dataset)
for these synthetic data.

For the noise injected data, ARI, and WCSS are plotted in Figure2. The
WCSS of TWRP are much lower than single, average and complete linkage and
SOTA algorithms. The performance of k-means and TWRP are comparable.
We see as the noise grows to 40 percent (when the signal itself is poor) all the
algorithms tend to perform poorly. This is because we randomly generated noise
vectors and kept the original label.

The results for the real world datasets are summarized in Table 3. The re-
sults show that TWRP, k-means, and Wards algorithm have a very similar per-
formance. In contrast, single link perform poorly.

Scalability results are shown in Table 1 using synthetically generated data
sets at a range of dimensions between 100 to 7000. TWRP outperforms the other
algorithms by a large margin. TWRP is almost 56 faster than k-means and 358
times faster than Agglomerative Hierarchical for synthetic datasets having 7000
dimensions and 10,000 vectors. TWRP shows very little runtime performance
degradation as the dimension increases. The same cannot be said of the other
algorithms. The runtime at a fixed dimension as the number of vectors was
increased of was also studied. In particular Table 2 shows scalabilty of TWRP
on a data set of 1,000 features as the number of vectors is varied between 30K to
1M. This shows a growth in the runtimes that is linear to the number of vectors.
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Dataset Measures ARI Purity WCSS Time

k-means 0.4610 0.6002 182 169 66.33
SL 0.0000 0.1890 556 519 493.95

HAR CL 0.3270 0.3770 222 044 494.47
AL 0.3321 0.3588 236 143 494.21
Ward’s 0.4909 0.6597 191 441 494.64
SOTA 0.3143 0.3966 210 490 23.63
TWRP 0.5125 0.5849 188 552 2.82

k-means 0.3988 0.6498 2 498 381 182.90
SL 0.0003 0.1821 6 023 519 601.98

HAPT CL 0.0488 0.2505 4 584 352 602.42
AL 0.0055 0.2046 5 491 388 602.04
Ward’s 0.4033 0.6624 2 617 769 602.68
SOTA 0.3026 0.3848 2 990 195 31.13
TWRP 0.3541 0.6257 2 593 802 6.54

k-means 0.2461 0.4240 1 618 089 23.55
SL 0.0000 0.1964 3 166 056 148.43

HARAAL CL 0.0003 0.2002 3 043 579 148.53
AL 0.0001 0.1972 3 097 976 148.45
Ward’s 0.2764 0.3929 1 653 179 148.58
SOTA 0.2370 0.3785 1 814 593 12.30
TWRP 0.2352 0.4076 1 636 495 2.64

k-means 0.6048 0.8122 9 001 974 483 47.45
SL 0.0000 0.4637 10 823 661 183 2266.78

INLOC CL 0.7298 0.8413 9 257 876 517 2268.77
AL 0.0000 0.4637 10 816 420 807 2267.82
Ward’s 0.7452 0.8469 9 040 839 873 2269.25
SOTA 0.3954 0.7149 9 296 280 113 35.10
TWRP 0.5322 0.7873 9 055 103 257 3.72

k-means 0.1539 0.4427 27 714 236 160 297 9.05
SL 0.0000 0.2165 192 076 751 899 323 42.61

Gas- CL 0.0380 0.3474 47 050 045 285 192 42.57
Sensor AL 0.0037 0.2865 75 622 509 139 114 42.45

Ward’s 0.2007 0.4378 31 162 058 051 998 42.87
SOTA 0.0281 0.3435 46 727 103 818 336 11.93
TWRP 0.2040 0.4709 31 000 000 000 000 1.86

k-means 0.6438 0.8402 12 834 131 180.32
SL 0.0007 0.3783 16 007 266 97.10

RNASEQ CL −0.0124 0.3758 15 692 260 97.10
AL 0.0007 0.3783 16 007 266 97.08
Ward’s 0.5955 0.8202 12 916 461 97.09
SOTA 0.3205 0.6317 13 632 923 87.72
TWRP 0.5944 0.8077 20 357 469 7.45

Fig. 3. Performance for real data sets
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Dimension k-means Average SOTA TWRP

Link

100 3.9656 47.46 13.758 1.5930

300 13.3796 194.121 23.797 2.2386

500 32.92 454.777 36.046 2.7942

700 77.7298 672.759 48.963 3.7974

900 117.3675 929.6 61.759 4.2552

1000 142.2341 1064.178 68.86 4.6368

1500 237.0007 1789.142 96.795 6.3204

2000 366.0743 2450.813 127.972 7.9176

2500 431.5876 3108.654 155.968 9.6270

3000 542.0223 3771.886 185.23 11.1174

3500 631.8423 4435.349 220.562 12.9984

4000 741.915 5080.802 248.669 14.3292

4500 811.3911 5725.061 274.983 15.3030

5000 909.223 6362.574 301.314 17.2584

5500 975.2703 7006.91 324.314 19.3518

6000 1076.882 7645.155 359.911 20.2080

6500 1187.6062 8278.964 400.767 21.4596

7000 1340.8115 8520.85 428.15 23.7648

Table 1. Scalability with respect to Dimension(seconds)

size 30K 50K 70K 90K 100K 300K 600K 1M

TWRP 10.62 16.53 21.17 27.20 31.52 84.53 157.58 278.29

Table 2. Scalability with respect to size of dataset (seconds)
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6 Conclusions

In this work we introduced the Tree-Walk Random Projection (TWRP) algo-
rithm for clustering large high dimensional datasets with log-linear processing
complexity. We applied the TWRP algorithm to real data and found that it
performs comparably to other commonly used clustering methods. In tests with
synthetic data, where clusters are well defined and spherical, we find that TWRP
accuracy outperforms k-means and is equivalent to other standard techniques.
In addition, TWRP performance is at par with k-means and Ward’s algorithm
for noise injected into a dataset. We suspect this is a result of our simplified clus-
tering metric favoring higher support partitions which is unable to distinguish a
partition of noise from the true cluster ground truth. We believe choosing a dif-
ferent clustering metric such as C4.5 or within cluster sum of squared error, for
the cluster tree bifurcation could potentially extend the effectiveness of TWRP
to noisier data sets, however with an additional cost in computation and storage.

The complexity analysis of our method finds that it scales very well both in
time and space complexity. The overall scalability is predictable and does not
hide large constants.

As TWRP was designed to process very large high dimensional clustering
problems, a key requirement is that it be fast. The results show quite clearly
that TWRP achieves this goal by comprehensively beating other well known
algorithm in its running time and scalability.
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